Copied to
clipboard

G = C42.38Q8order 128 = 27

38th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.38Q8, C23.506C24, C22.2862+ 1+4, C22.2092- 1+4, C424C4.23C2, C425C4.11C2, (C2×C42).593C22, (C22×C4).125C23, C22.127(C22×Q8), C23.81C23.24C2, C2.C42.551C22, C23.65C23.65C2, C23.63C23.35C2, C2.38(C23.37C23), C2.76(C22.46C24), C2.17(C23.41C23), C2.80(C22.47C24), (C4×C4⋊C4).77C2, (C2×C4).128(C2×Q8), (C2×C4).164(C4○D4), (C2×C4⋊C4).345C22, C22.382(C2×C4○D4), SmallGroup(128,1338)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.38Q8
C1C2C22C23C22×C4C2×C42C424C4 — C42.38Q8
C1C23 — C42.38Q8
C1C23 — C42.38Q8
C1C23 — C42.38Q8

Generators and relations for C42.38Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=a2c2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 308 in 190 conjugacy classes, 100 normal (22 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2.C42, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C424C4, C4×C4⋊C4, C425C4, C23.63C23, C23.65C23, C23.81C23, C42.38Q8
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.37C23, C23.41C23, C22.46C24, C22.47C24, C42.38Q8

Smallest permutation representation of C42.38Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 57 25 17)(2 58 26 18)(3 59 27 19)(4 60 28 20)(5 35 77 82)(6 36 78 83)(7 33 79 84)(8 34 80 81)(9 50 100 72)(10 51 97 69)(11 52 98 70)(12 49 99 71)(13 29 53 47)(14 30 54 48)(15 31 55 45)(16 32 56 46)(21 65 61 43)(22 66 62 44)(23 67 63 41)(24 68 64 42)(37 126 103 116)(38 127 104 113)(39 128 101 114)(40 125 102 115)(73 123 93 109)(74 124 94 110)(75 121 95 111)(76 122 96 112)(85 105 89 119)(86 106 90 120)(87 107 91 117)(88 108 92 118)
(1 21 13 51)(2 62 14 70)(3 23 15 49)(4 64 16 72)(5 88 37 110)(6 89 38 121)(7 86 39 112)(8 91 40 123)(9 60 42 32)(10 17 43 47)(11 58 44 30)(12 19 41 45)(18 66 48 98)(20 68 46 100)(22 54 52 26)(24 56 50 28)(25 61 53 69)(27 63 55 71)(29 97 57 65)(31 99 59 67)(33 106 128 76)(34 117 125 93)(35 108 126 74)(36 119 127 95)(73 81 107 115)(75 83 105 113)(77 92 103 124)(78 85 104 111)(79 90 101 122)(80 87 102 109)(82 118 116 94)(84 120 114 96)
(1 107 15 75)(2 106 16 74)(3 105 13 73)(4 108 14 76)(5 100 39 66)(6 99 40 65)(7 98 37 68)(8 97 38 67)(9 101 44 77)(10 104 41 80)(11 103 42 79)(12 102 43 78)(17 85 45 109)(18 88 46 112)(19 87 47 111)(20 86 48 110)(21 81 49 113)(22 84 50 116)(23 83 51 115)(24 82 52 114)(25 117 55 95)(26 120 56 94)(27 119 53 93)(28 118 54 96)(29 121 59 91)(30 124 60 90)(31 123 57 89)(32 122 58 92)(33 72 126 62)(34 71 127 61)(35 70 128 64)(36 69 125 63)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,57,25,17)(2,58,26,18)(3,59,27,19)(4,60,28,20)(5,35,77,82)(6,36,78,83)(7,33,79,84)(8,34,80,81)(9,50,100,72)(10,51,97,69)(11,52,98,70)(12,49,99,71)(13,29,53,47)(14,30,54,48)(15,31,55,45)(16,32,56,46)(21,65,61,43)(22,66,62,44)(23,67,63,41)(24,68,64,42)(37,126,103,116)(38,127,104,113)(39,128,101,114)(40,125,102,115)(73,123,93,109)(74,124,94,110)(75,121,95,111)(76,122,96,112)(85,105,89,119)(86,106,90,120)(87,107,91,117)(88,108,92,118), (1,21,13,51)(2,62,14,70)(3,23,15,49)(4,64,16,72)(5,88,37,110)(6,89,38,121)(7,86,39,112)(8,91,40,123)(9,60,42,32)(10,17,43,47)(11,58,44,30)(12,19,41,45)(18,66,48,98)(20,68,46,100)(22,54,52,26)(24,56,50,28)(25,61,53,69)(27,63,55,71)(29,97,57,65)(31,99,59,67)(33,106,128,76)(34,117,125,93)(35,108,126,74)(36,119,127,95)(73,81,107,115)(75,83,105,113)(77,92,103,124)(78,85,104,111)(79,90,101,122)(80,87,102,109)(82,118,116,94)(84,120,114,96), (1,107,15,75)(2,106,16,74)(3,105,13,73)(4,108,14,76)(5,100,39,66)(6,99,40,65)(7,98,37,68)(8,97,38,67)(9,101,44,77)(10,104,41,80)(11,103,42,79)(12,102,43,78)(17,85,45,109)(18,88,46,112)(19,87,47,111)(20,86,48,110)(21,81,49,113)(22,84,50,116)(23,83,51,115)(24,82,52,114)(25,117,55,95)(26,120,56,94)(27,119,53,93)(28,118,54,96)(29,121,59,91)(30,124,60,90)(31,123,57,89)(32,122,58,92)(33,72,126,62)(34,71,127,61)(35,70,128,64)(36,69,125,63)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,57,25,17)(2,58,26,18)(3,59,27,19)(4,60,28,20)(5,35,77,82)(6,36,78,83)(7,33,79,84)(8,34,80,81)(9,50,100,72)(10,51,97,69)(11,52,98,70)(12,49,99,71)(13,29,53,47)(14,30,54,48)(15,31,55,45)(16,32,56,46)(21,65,61,43)(22,66,62,44)(23,67,63,41)(24,68,64,42)(37,126,103,116)(38,127,104,113)(39,128,101,114)(40,125,102,115)(73,123,93,109)(74,124,94,110)(75,121,95,111)(76,122,96,112)(85,105,89,119)(86,106,90,120)(87,107,91,117)(88,108,92,118), (1,21,13,51)(2,62,14,70)(3,23,15,49)(4,64,16,72)(5,88,37,110)(6,89,38,121)(7,86,39,112)(8,91,40,123)(9,60,42,32)(10,17,43,47)(11,58,44,30)(12,19,41,45)(18,66,48,98)(20,68,46,100)(22,54,52,26)(24,56,50,28)(25,61,53,69)(27,63,55,71)(29,97,57,65)(31,99,59,67)(33,106,128,76)(34,117,125,93)(35,108,126,74)(36,119,127,95)(73,81,107,115)(75,83,105,113)(77,92,103,124)(78,85,104,111)(79,90,101,122)(80,87,102,109)(82,118,116,94)(84,120,114,96), (1,107,15,75)(2,106,16,74)(3,105,13,73)(4,108,14,76)(5,100,39,66)(6,99,40,65)(7,98,37,68)(8,97,38,67)(9,101,44,77)(10,104,41,80)(11,103,42,79)(12,102,43,78)(17,85,45,109)(18,88,46,112)(19,87,47,111)(20,86,48,110)(21,81,49,113)(22,84,50,116)(23,83,51,115)(24,82,52,114)(25,117,55,95)(26,120,56,94)(27,119,53,93)(28,118,54,96)(29,121,59,91)(30,124,60,90)(31,123,57,89)(32,122,58,92)(33,72,126,62)(34,71,127,61)(35,70,128,64)(36,69,125,63) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,57,25,17),(2,58,26,18),(3,59,27,19),(4,60,28,20),(5,35,77,82),(6,36,78,83),(7,33,79,84),(8,34,80,81),(9,50,100,72),(10,51,97,69),(11,52,98,70),(12,49,99,71),(13,29,53,47),(14,30,54,48),(15,31,55,45),(16,32,56,46),(21,65,61,43),(22,66,62,44),(23,67,63,41),(24,68,64,42),(37,126,103,116),(38,127,104,113),(39,128,101,114),(40,125,102,115),(73,123,93,109),(74,124,94,110),(75,121,95,111),(76,122,96,112),(85,105,89,119),(86,106,90,120),(87,107,91,117),(88,108,92,118)], [(1,21,13,51),(2,62,14,70),(3,23,15,49),(4,64,16,72),(5,88,37,110),(6,89,38,121),(7,86,39,112),(8,91,40,123),(9,60,42,32),(10,17,43,47),(11,58,44,30),(12,19,41,45),(18,66,48,98),(20,68,46,100),(22,54,52,26),(24,56,50,28),(25,61,53,69),(27,63,55,71),(29,97,57,65),(31,99,59,67),(33,106,128,76),(34,117,125,93),(35,108,126,74),(36,119,127,95),(73,81,107,115),(75,83,105,113),(77,92,103,124),(78,85,104,111),(79,90,101,122),(80,87,102,109),(82,118,116,94),(84,120,114,96)], [(1,107,15,75),(2,106,16,74),(3,105,13,73),(4,108,14,76),(5,100,39,66),(6,99,40,65),(7,98,37,68),(8,97,38,67),(9,101,44,77),(10,104,41,80),(11,103,42,79),(12,102,43,78),(17,85,45,109),(18,88,46,112),(19,87,47,111),(20,86,48,110),(21,81,49,113),(22,84,50,116),(23,83,51,115),(24,82,52,114),(25,117,55,95),(26,120,56,94),(27,119,53,93),(28,118,54,96),(29,121,59,91),(30,124,60,90),(31,123,57,89),(32,122,58,92),(33,72,126,62),(34,71,127,61),(35,70,128,64),(36,69,125,63)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim11111112244
type+++++++-+-
imageC1C2C2C2C2C2C2Q8C4○D42+ 1+42- 1+4
kernelC42.38Q8C424C4C4×C4⋊C4C425C4C23.63C23C23.65C23C23.81C23C42C2×C4C22C22
# reps111144441611

Matrix representation of C42.38Q8 in GL6(𝔽5)

330000
420000
001000
000100
000003
000030
,
200000
020000
004000
000400
000004
000040
,
220000
030000
000100
004000
000002
000020
,
110000
340000
000200
002000
000003
000020

G:=sub<GL(6,GF(5))| [3,4,0,0,0,0,3,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,3,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[2,0,0,0,0,0,2,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0],[1,3,0,0,0,0,1,4,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0] >;

C42.38Q8 in GAP, Magma, Sage, TeX

C_4^2._{38}Q_8
% in TeX

G:=Group("C4^2.38Q8");
// GroupNames label

G:=SmallGroup(128,1338);
// by ID

G=gap.SmallGroup(128,1338);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,120,758,723,184,675,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*c^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽